C.U.SHAH UNIVERSITY
 WADHWAN CITY

University Examination-May 2015
Course Name: M.Sc-IV Subject Name : Problem solving-II(5sco4PBE1) Marks: 70
Duration : 3 Hours

Instructions:

1) Attempt all Question of both sections in same answer book/supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

	SECTION - I					
Q-1 (A)	What is Lagrange's equation?					[01]
(B)	Obtain Newton-Raphson formula to find $\frac{1}{N}$ where N is positive integer.					[02]
(C)	Write the difference between algebraic equation and transcendental equation?					[02]
(D)	If $f(x, y, z, p, q)=0$ is given deferential equation then write the auxiliary equation for Charpit's method.					[02]
Q-2 (A)	Find a root of $x^{3}-2 x-5=0$ correct to four decimal places, using Bisection method.					[07]
(B)	Solve by Gauss - Seidal method.$\begin{gathered} 20 x+y-2 z=17 \\ 3 x+20 y-z=-18 \\ 2 x-3 y+20 z=25 \end{gathered}$					[07]
	OR					
Q-2 (A)	Find a real root of the equation $\cos x=3 x-1$ correct to four decimal places by using Newton-Raphson method.					[07]
(B)	Solve by Gauss-elimination method correct to three decimal places.$\begin{aligned} & x+2 y+z=3 \\ & 2 x+3 y+3 z=10 \\ & 3 x-y+2 z=13 \end{aligned}$					[07]
Q-3 (A)	Find a root of $x e^{x}-2=0$ correct to two decimal places, using Regula-Falsi method.					[07]
(B)	Use Lagrange's Interpolation formula to find y when $\mathrm{x}=9$.					[07]
	X	4	6	8	10	
	y	12	13	15	17	
	OR					

Q-3 (A)	Evaluate $\frac{d y}{d x}$ at $\mathrm{x}=35$ from the following data.						[07]
	x 20	25	30	35	40	45	
	y 354	332	291	260	231	204	
(B)	The population of a certain town is given below. Using Numerical differentiation, find the rate of growth of the population in 1931.						[07]
	Year(x)	1932	1942	1952	1962	1972	
	Population(y) (in thousands)	41.62	61.80	80.95	104.56	133.65	
	SECTION - II						
Q-4 (A)	What is clairaut's equation?						[01]
(B)	Solve: $\sqrt{p}+\sqrt{q}=\mathrm{x}+\mathrm{y}$						[02]
(C)	Define group.						[02]
(D)	Show that identity element in group is unique.						[02]
Q-5 (A)	Solve $y z \frac{\partial z}{\partial x}+x z \frac{\partial z}{\partial y}=y z$						[05]
(B)	Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$ if $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.						[05]
©	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\cosh x \sin y$.						[04]
	OR						
Q-5 (A)	Using method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$.						[05]
(B)	Obtain three possible solutions of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$.						[05]
(C)	Solve $\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$.						[04]
Q-6 (A)	Using charpit's method solve: $2 \mathrm{xz}-\mathrm{p} x^{2}-2 \mathrm{qxy}+\mathrm{pq}=0$						[07]
(B)	Solve : $\mathrm{r}-4 \mathrm{~s}+4 \mathrm{t}=e^{2 x+y}$.						[07]
	OR						
Q-6 (A)	Let G be a finite group and let H be a subgroup of G Let $a, b \in G$ then Prove the fol lowing statements. (1) $a \in a H$. (2) If $\mathrm{aH} \cap b H \neq \emptyset$ then $\mathrm{aH}=\mathrm{bH}$.						[05]

$\left.\begin{array}{|r|l|l|l|}\hline \text { (B) } & \text { Prove that if } \mathrm{G} \text { is a finite group and a } \in G \text { then } a^{|G|}=\mathrm{e} . & {[05]} \\ \hline \text { (C) } & \text { Compute the fol lowing products in } \mathrm{S}_{4} . & {[04]} \\ & \text { (1) }\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right) \\ \text { (2) }\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right. & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$.

