C.U.SHAH UNIVERSITY WADHWAN CITY

University Examination-May 2015

Subject Name : Problem solving-II(5SC04PBE1) Marks: 70

Duration : 3 Hours

Course Name: M.Sc-IV

Instructions:

- 1) Attempt all Question of both sections in same answer book/supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

	SECTION - I							
Q-1 (A)	What is Lagrange's equation?							
(B)	Obtain Newton-Raphson formula to find $\frac{1}{N}$ where N is positive integer.							
(C)	Write the difference between algebraic equation and transcendental equation?							
(D)	If $f(x,y,z,p,q)=0$ is given deferential equation then write the auxiliary equation for Charpit's method.							
Q-2 (A)	Find a root of $x^3 - 2x - 5 = 0$ correct to four decimal places, using Bisection							
	method.							
(B)								
	20x + y - 2z = 17							
	3x + 20y - z = -18							
	2x - 3y + 20z = 25							
	OR							
Q-2 (A)	Find a real root of the equation $\cos x = 3x - 1$ correct to four decimal places by							
	using Newton-Raphson method.							
(B)	Solve by Gauss-elimination method correct to three decimal places.							
	x + 2y + z = 3							
	2x + 3y + 3z = 10							
	3x - y + 2z = 13							
						[07]		
Q-3 (A)	Find a root of $xe^x - 2 = 0$ correct to two decimal places, using Regula-Falsi							
(B)	method.Use Lagrange's Interpolation formula to find y when x=9.							
(D)	X	4	6	8 8	10	[07]		
	v v	12	13	15	17			
	OR							

Q-3 (A)	Evaluate $\frac{dy}{dx}$ at x = 35 from the following data.								
	X	20	25	30	35	40	45		
	У	354	332	291	260	231	204		
(B)	The population of a certain town is given below. Using Numerical differentiation,								
	find the rate of growth of the population in 1931.								
	Year	r(x)	1932	1942	1952	1962	1972		
	Populat (in thou		41.62	61.80	80.95	104.56	133.65		
		,		SECTION -	II				
Q-4(A)	What is clairaut's equation?								
(B) (C)	Solve: $\sqrt{p} + \sqrt{q} = x + y$								
(C) (D)	Define group. Show that identity element in group is unique.							[02]	
Q-5 (A)	Solve $yz\frac{\partial z}{\partial x} + xz\frac{\partial z}{\partial y} = yz.$						[05]		
(B)	Solve $\frac{\partial^2 z}{\partial y^2} = z$ if $y = 0, z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$.							[05]	
©	Solve $\frac{\partial^2 z}{\partial x \partial y} = \cosh x \sin y.$							[04]	
	OR								
Q-5 (A)	Using method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, where $u(x, 0) = 6e^{-3x}$.							[05]	
(B)	Obtain three possible solutions of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.							[05]	
(C)	Solve $\frac{\partial^2 u}{\partial x^2} - 4 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0.$							[04]	
Q-6 (A)	Using charp	oit's method	l solve: 2xz- <i>p</i>	$px^2-2qxy+pc$	q=0			[07]	
(B)	Solve : r - 4	$s+4t=e^{2t}$	^{x+y} .					[07]	
				OR					
Q-6 (A)	Let G be a f	ïnite group	and let H be	a subgroup	of G Let			[05]	
	a, $b \in G$ then Prove the fol lowing statements.								
	(1) $a \in aH$.								
	(2) If	aH ∩ $bH =$	≤ Ø then aH=	bH.					

(B)	Prove that if G is a finite group and $a \in G$ then $a^{ G } = e$.					
(C)	Compute the fol lowing products in S ₄ .					
	(1) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$					
	$(2) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$					
	$(3) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$					
	$ (4) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} $					